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One of the challenges for modern synthesis is to create distinct Scheme 1. Divergent Reactivity Based on Ligand Selection

types of complex molecules from identical starting materials based EtO

: : CO,Et CO,Et
solely on catalyst selection. In this context, Rh(Il)carboxylates and Ph/z\ R=t-Bu R=CPh, |Ar o
Rh(Il)carboxamidates are remarkable, as a relatively small body A H—— oS _A’r ‘
of related catalysts can effect a diverse range of reacivty.  roTmn N=( H (Rh]
Herein, we present the first general method for cyclopropenation | R—<(| | . COoEt O
that tolerateg3-hydrogens and the first examples of diré&Rh- O,Rn = Ar

catalyzed intermolecular alkyne insertions to generate putative
alkenyl carbene intermediates (Scheme 1). Both of these pathways7able 1. The Effect of Ligand Choice on Rh-Catalyzed

can be accessed via common starting materials based on IlganaC yclopro%egalt:fn
selection. Me 2
) ) . - talyst (0.5 mol% COLEt —
Chiral cyclopropenes are increasingly popular building blocks N2 M MG/K + Mé  COEt
for asymmetric syntheskAlthough the Rh-catalyzed reaction of + Ph——=— CH?C;ZS o?’Ch Ph 2
diazo compounds with alkynes is a particularly powerful tool for (3 equiv) B 1
the synthesis of cyclopropen&a,major limitation was that simple catalyst 1 2
a-alkyl-a-diazoacetates were not viable owing to a lack of
selectivity overs-hydride eliminatiort. In elegant studies, Mier2 (R =CHz(Rh,0Ac,) 0% 30% MeMe
ar_1d Padw#® de_scrlbed t_he RIDAC, cat_alyzed re_actlons of 1-hexyne R=C/Hys(Rh,Octy) 6%  50%| , g . t
with ethyl a-diazopropionate and-diazopropiophenone, respec- i S lfh=0 we
tively. However, thg8-hydrogens of these diazo compounds belong R =CMej; (RhoPivg)  59%7 11% |07 ZME
o] 4
to strong (methyl) bonds, and cyclopropenation reactions with R =CMe, (at rt) 5% 70% Y
weaker-C—H bonds were unknown. As shown in Table 1, the R—(( |<
reactivity of ethyl a-diazobutanoate with phenylacetylene was O1,Rh | R =CMe,Ph (3) 58%2 13% Rhzesp,
surveyed. Attempts to adapt kno$veonditions (0.5 mol % R;h R =CMePh, (4) 29%  40%| 44%° (1) +12% (2)
OAc,) were unsuccessful, as were attempts to apply a variety of .
rhodium(ll) carboxylate$? Rh(ll) carboxamidates? and Cu R =CPhg (Rh;TPA,) 12%% 12%
catalyst8 that have bee_n used previously in cycloproperjatior_w and \-R =CF; (Rh,TFA,) 0%  80%
cyclopropanation reactions (Table 1). Howevewas obtained in
6% yield along with 50% of ethytis-crotonate 2) with Rh,Octy catalysts screened that did not give 1
at—78°C. It was reasoned that the difference in reactivity between Pr P
) o . . Rh,(5S-MEPY),
Rh,Oct; and RhOAc, might be steric in origin. In accord with ~ "2(S-DOSPl Al NQV Bu Q C”CQ
this hypothesis, RiPiv,; was shown to givel in 59% vyield with Rha(S-PTPA), Rha(45-MEOX), g C
only 11% of crotonat® at —78 °C. High selectivity for cyclopro- m m
penation ovep-hydride elimination was also observed with Rh asolated yield. Other yields were measured'pyNMR.
esp?¢ and catalys8. However, only low yields ofl were obtained
when RBTFA, [dirhodium tetra(trifluoroacetate)], RRPA, [di- were not obtained when ethgltdiazobutanoate was reacted with

rhodium tetra(triphenylacetate)], or catalgstrere utilized. Reaction 1-hexyne, diphenylacetylene, or 1-phenyl-1-butyne undePRh
temperature is a critical parameter for the cyclopropenation reaction. catalysis.

Thus, 1 was obtained in<5% yield when the RiPiv, catalyzed The reactivity of aryl alkynes with ethyl-diazohydrocinnamate
reaction was carried out at room temperature instead g °C: is altered dramatically by changing the catalyst fromM¥, to
the major product was crotona®eas a 6:1Z/E mixture. RhTPA,: angularly substituted dihydroazulenes of structusze

As shown in Table 2, the RRiv, catalyzed cyclopropenationis  formed (Scheme 2), and cyclopropenes are not observed. Ethyl
successful for a range of terminal alkynes witlliazopropionate, 1-benzyl-2-phenylcyclo-prop-2-ene carboxylate does not react when
o-diazobutanoate, and-diazohydrocinnamate. The success of treated with RETPA,, and therefore is unlikely to be an intermediate
a-diazohydrocinnimate is notable given the susceptiblility of in the formation 0f.19 It is proposed that the formation &ftakes
benzylic hydrogens to undergishydride elimination. The moderate  place via a tandem alkyne insertiorifBuer ring expansidh
yields (40-75%) should be considered in the context of known (Scheme 2) via intermediatés-8.
cyclopropenation reactioffswhich typically proceed in similar Rh-catalyzed intramolecular alkyne insertions to generate putative
yields even without the complications ¢f-hydrogens. The alkenyl carbene intermediates are kno¥hput the reactions in
described method is successful for terminal alkynes that are Scheme 2 represent the first soféiptermolecular examples. These
conjugated to an arene or alkene. However, cyclopropene productseactions rapidly build molecular complexity, and other intermo-
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Table 2. Cyclopropenation of Arylalkynes by Diazoesters with
p-Hydrogens
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lecular alkyne insertion cascade reactions (e.g., CH insertion) should

also be feasible.

In earlier studies that compargdhydride elimination to GH
insertiod? or O—H insertion® only minor improvements were
observed when Rh-catalysts with sterically demanding carboxylate
ligands were compared to RDAc, or RhOct,. Currently, it is
unclear why hindered carboxylate ligands lead to such dramatic
improvements in cyclopropenation and dihydroazulene formation.
Several distinct mechanisms for cyclopropenation have been
proposed in the literatufé. A goal of future studies will be to
develop a rationale to explain why different ligands lead to divergent

reaction pathways and to design new catalyst systems accordingly.
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